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A b s t r a c t

Introduction: Fluid overload is one of the most important, yet modifiable, 
risk factors associated with worse outcomes in hemodialysis (HD) patients. 
However, its precise assessment in clinical practice is still under investigation.
Material and methods: This is an observational prospective study which 
included 285 stable patients with end-stage renal disease on standard 
thrice-weekly HD therapy. Overhydration was assessed by the combina-
tion of relative fluid overload (RFO), using bioimpedance spectroscopy, and 
N-terminal pro-B-type natriuretic peptide (NT-proBNP). The outcome of in-
terest was all-cause mortality.
Results: The median values for NT-proBNP and RFO were 4595 pg/ml and 
6.9%, respectively. We divided the study population into four groups accord-
ing to these median levels: group 1 – low NT-proBNP and low RFO; group 2  
– high NT-proBNP and low RFO; group 3 – low NT-proBNP and high RFO; 
group 4 – high NT-proBNP and high RFO. During the follow-up (mean: 41.1, 
median: 48.7 months), 89 (31.2%) patients died. In the univariable Cox sur-
vival analysis only patients in group 4, and not those from group 2 or 3, had 
significantly higher HRs as compared to those in group 1 (HR = 1.5, 95% CI: 
0.8–2.8, HR = 1.6, 95% CI: 0.8–2.9 and HR = 2.4, 95% CI: 1.3–4.2, for group 2,  
3 and 4, respectively). Furthermore, these results were maintained in the 
multivariable Cox analysis.
Conclusions: Including both bioimpedance and NT-proBNP monitoring in 
a more comprehensive fluid status assessment could improve the diagnosis 
of fluid overload with a final improvement in patients’ outcome.

Key words: fluid overload, bioimpedance spectroscopy, NT-proBNP, all-
cause mortality, hemodialysis.

Introduction

End-stage renal disease (ESRD) is associated with an increased mor-
tality rate [1], much higher than that observed in heart failure or many 
forms of cancer. Among the numerous characteristics that contribute to 
this excess death rate, fluid overload is one of the most important mod-
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ifiable factor associated with this outcome. Since 
clinical evaluation for assessing fluid status in di-
alysis patients lacks sensibility and specificity, nu-
merous efforts have been made to find alternative 
methods to better assess patients’ volume status 
[2], including measurement of inferior vena cava 
diameter [3], bioimpedance analysis [4], biomark-
ers of volume overload (such as natriuretic pep-
tides) [5] or lung ultrasonography for detection of 
B-lines [6].

Bioimpedance spectroscopy defines the indi-
vidual fluid status/overload on the basis of an in-
dividual’s normal extracellular volume, taking into 
account the individual’s body composition. Recent 
studies show that fluid overload, as assessed by 
this technique, is one of the most important pre-
dictors of mortality in hemodialysis (HD) patients 
[4, 7]. It can also improve the predictive abilities 
for mortality above different clinical and biological 
parameters [8]. More importantly, the use of this 
method to achieve normohydration is associated 
with an improvement in blood pressure and arteri-
al stiffness [9, 10] and even with reduced all-cause 
mortality [10].

The use of brain-type natriuretic peptide (BNP) 
for fluid overload evaluation in HD is still contro-
versial [11]. There are numerous papers that show 
a  positive relationship between BNP levels and 
fluid overload in this population [5, 12–14] and 
also that these increased levels are associated 
with worse outcomes [14–19].

Bioimpedance analysis does not differentiate 
between intravascular and interstitial extracellu-
lar water (ECW) and serum BNP does not reflect 
interstitial/tissue water content. The differenti-
ation of “wet BNP” (bioimpedance-determined 
excessive water content plus high BNP values in-
duced by volume overload) from “dry BNP” (bio-
impedance-determined euvolemia plus high BNP 
values) has been suggested to improve detailed 
fluid status evaluation in clinical practice [20]. 
Therefore, we hypothesized that a  combination 
of these two methods (bioimpedance and N-ter-
minal-proBNP (NT-proBNP)) could potentially pro-
vide complementary information about the rela-
tionship between fluid overload and survival in 
HD patients.

Material and methods

Patients

Between 1 April and 1 October 2012, we invited 
all patients who were undergoing HD for at least 
3 months in two dialysis units to take part in this 
study. We excluded patients under 18 years old, 
with systemic infections and terminal neoplasia; 
subjects with metallic joint prostheses, cardiac 
pacemakers or stents, decompensated cirrhosis 

and limb amputations were also excluded, since 
accurate bioimpedance assessment cannot be 
performed in patients with these conditions. 

From an overall eligible 337 HD patients we 
excluded 52 patients because of limb amputation  
(n = 10), decompensated cirrhosis (n = 6) or pres-
ence of a cardiac pacemaker or stent (n = 11). Twen-
ty-five additional patients did not provide informed 
consent and were not included in the study. Details 
of the final patient population (n = 285) are pre-
sented in Table I. All included patients performed 
intermittent HD (4 h per session, three times per 
week), using high-flux membrane dialyzers. 

All laboratory parameters were determined 
pre-dialysis, once in each patient at the inclu-
sion of the study before a midweek HD session. 
NT-proBNP in serum samples were collected at the 
same time and were analyzed centrally using the 
Roche Elecsys kit, an electro-chemiluminescence 
‘sandwich’ immunoassay based on polyclonal an-
tibodies against NT-proBNP.

Included patients were followed up for time-to-
event analysis until occurrence of death. Patients 
were censored at the last follow-up (1 August 
2016) or if they moved to another dialysis unit, 
switched to peritoneal dialysis or received a kid-
ney transplant. All procedures performed in this 
study were in accordance with the 1964 Decla-
ration of Helsinki and its later amendments. The 
study protocol was approved by the Ethics Com-
mittee of University Hospital ‘Dr C.I. Parhon’ (Iasi, 
Romania).

Bioimpedance spectroscopy

The hydration state and the body composition 
were estimated using a portable whole body bio-
impedance spectroscopy device (BCM–Fresenius 
Medical Care D GmbH). This device measures the 
impedance spectroscopy at 50 frequencies. Mea-
surements were performed before a  midweek 
dialysis session, at the same time as the serum 
samples collection. 

All measurements were performed by two 
trained physicians blinded to patients’ daily man-
agement. The ECW, intracellular water (ICW) and 
total body water (TBW) were determined as previ-
ously described [21]. Absolute fluid overload (AFO) 
was defined as the difference between the expect-
ed patient’s ECW under normal physiological con-
ditions and the actual ECW, whereas the relative 
fluid overload (RFO), used to facilitate comparison 
between patients, was defined as the absolute flu-
id overload to extracellular water ratio (AFO/ECW).

 
Statistical analysis

Data are expressed as mean ± SD, median with 
inter-quartile range (IQR) or as percent frequen-
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cy, as appropriate. Comparisons between groups 
were performed with the one-way analysis of vari-
ance (ANOVA) for normally distributed variables, 
Kruskal-Wallis test for non-normally distributed 
variables and by the χ2 test for categorical data. 
For the pairwise multiple comparisons analysis 
we used the Bonferroni post-hoc test and the 
Mann-Whitney test with Bonferroni correction 
for normally distributed and non-normally distrib-
uted variables, respectively. The normality of the 

distribution of the variables was tested with the 
Shapiro-Wilk test. Logarithmic conversion was 
performed for non-normally distributed variables. 
The association between NT-proBNP and RFO lev-
els was investigated by the Pearson product mo-
ment correlation coefficient.

Survival between different groups was com-
pared using the Kaplan-Meier log-rank test for 
statistical significance and Cox analysis. The mul-
tivariable Cox models included all the variables 

Table I. Baseline characteristics of the study population

Parameter All
(N = 285)

Group 1  
(n = 81)

Group 2  
(n = 62)

Group 3  
(n = 62)

Group 4
(n = 80)

P-value*

Age [years] 58.9 ±14.1 57.9 ±14.9 62.0 ±14.0 55.4 ±13.9 60.1 ±13.2 0.06

Weight [kg] 71.3 ±14.7 75.4 ±13.9 70.7 ±16.3 70.1 ±12.9 68.6 ±14.9 0.02

Dialysis vintage [years] 52.6
(18.7–97.5)

27.8
(11.3–62.2)

51.6
(17.0–93.5)

81.5
(22.7–147.2)

72.8
(37.2–117.4)

< 0.001

Male, n (%) 136 (47.7) 35 (43.2) 25 (40.3) 37 (59.7) 39 (48.8) 0.13

Hypertension, n (%) 213 (74.7) 56 (69.1) 50 (80.6) 47 (75.8) 60 (75.0) 0.47

Systolic pressure  
[mm Hg]

134.9 ±14.9 135.1 ±14.5 137.1 ±13.4 133.7 ±15.1 134.2 ±15.2 0.57

Diastolic pressure  
[mm Hg]

70.7 ±10.9 70.1 ±12.5 70.7 ±10.2 72.6 ±10.9 70.1 ±10.0 0.51

Diabetes, n (%) 50 (17.5) 15 (18.5) 11 (17.7) 11 (17.7) 13 (16.3) 0.99

NYHA class 3–4, n (%) 15 (5.3) 1 (1.2) 4 (6.5) 2 (3.2) 8 (10.0) 0.07

Peripheral arterial 
disease, n (%)

45 (15.8) 13 (16.0) 13 (21.0) 5 (8.1) 14 (17.5) 0.24

Coronary artery 
disease, n (%)

50 (17.5) 12 (14.8) 13 (21.0) 6 (9.7) 19 (23.8) 0.13

Stroke, n (%) 25 (8.8) 5 (6.2) 5 (8.1) 8 (12.9) 7 (8.8) 0.57

Anuric, n (%) 152 (53.3) 36 (44.4) 38 (61.3) 36 (58.1) 42 (52.5) 0.19

NT-proBNP [pg/ml] 4595.0
(1826.5–
13342.0)

1615.0
(1052.0–
3331.5)

8684.5
(5627.5–
16691.0)

2016.5
(1007.7–
2780.0)

18944.0
(8206.6–
30109.3)

< 0.001

Hemoglobin [g/dl] 11.5 ±1.5 11.3 ±1.5 11.5 ±1.5 11.6 ±1.4 11.5 ±1.6 0.73

CRP [mg/dl] 5.3 
(2.1–12.3)

4.2 
(2.1–8.5)

8.4 
(3.3–17.1)

4.7 
(1.4–13.1)

5.8 
(1.8–12.7)

0.04

Albumin [g/dl] 3.9 ±0.3 3.9 ±0.2 3.8 ±0.3 3.9 ±0.3 3.9 ±0.3 0.24

Calcium [mg/dl] 8.6 ±0.7 8.5 ±0.6 8.5 ±0.7 8.6 ±0.7 8.6 ±0.7 0.47

Phosphate [mg/dl] 5.1
(3.9–6.2)

5.2
(4.1–6.4)

5.3
(4.6–6.3)

4.9
(3.3–6.6)

4.7
(3.5–5.8)

0.11

TBW [l] 33.9 ±6.3 33.7 ±6.2 33.0 ±6.4 35.7 ±6.8 33.8 ±5.9 0.09

ECW [l] 16.2 ±2.9 15.8 ±2.6 15.3 ±2.9 17.2 ±3.1 16.4 ±2.8 0.001

ICW [l] 17.8 ±3.7 17.9 ±3.9 17.7 ±3.7 18.5 ±3.9 17.3 ±3.3 0.32

AFO [l] 1.2 ±1.3 0.3 ±0.7 0.1 ±0.8 2.3 ±1.1 2.1 ±0.8 < 0.001

RFO, % 7.1 ±7.6 1.6 ±4.2 0.8 ±5.8 13.4 ±5.1 12.8 ±4.3 < 0.001

Data are expressed as mean ± SD, median with IQR, or percent frequency, as appropriate. AFO – absolute fluid overload, CRP – C-reactive 
protein, ECW – extracellular water, ICW – intracellular water, NT-proBNP – N-terminal pro-B-type natriuretic peptide, NYHA – New York 
Heart Association, RFO – relative fluid overload, TBW – total body water. *Comparison between groups
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that showed an association with the outcome at 
a  p-value < 0.10. Proportional hazards assump-
tions were checked using the Schoenfeld residu-
als test. From Cox models including all univariable 
variables that showed an association with the 
outcome at a  p-value < 0.10 with and without 
continuous NT-proBNP and RFO we evaluated the 
C statistic difference, continuous net reclassifica-
tion index (NRI), and integrated discrimination im-
provement index (IDI) using methods accounting 
for censoring [22, 23].

The Bayesian information criterion (BIC) and 
the Akaike information criterion (AIC) scores were 
calculated for each model; the model with the 
lower BIC and AIC scores indicates a better model.

All statistical analyses were performed with 
SPSS 19.0 (SPSS Inc., Chicago, IL) and the R (ver-
sion 3.2.0) package for statistical analysis (Foun-
dation for Statistical Computing, Vienna, Austria). 
A p-value < 0.05 was considered statistically sig-
nificant.

Results

Baseline characteristics

Two hundred and eighty-five chronic HD pa-
tients were included in this study: 136 (47.7%) 
males, with a mean age of 58.9 years and a medi-
an dialysis vintage of 52.6 months. Two hundred 
and thirteen (74.7%) and 50 (17.5%) patients had 
hypertension and diabetes, respectively (Table I). 
Other demographic, clinical and biological charac-

teristics of the entire population are presented in 
Tables I and II.

The median values for NT-proBNP and RFO 
were 4595 pg/ml and 6.9%, respectively. As per 
our aims we divided the study population into four 
groups according to median NT-proBNP and RFO 
levels: group 1 – low NT-proBNP (< 4595 pg/ml) 
and low RFO (< 6.9%); group 2 – high NT-proBNP  
(≥ 4595 pg/ml) and low RFO (< 6.9%); group 3 
– low NT-proBNP (< 4595 pg/ml) and high RFO  
(≥ 6.9%); group 4 – high NT-proBNP (≥ 4595 pg/
ml) and high RFO (≥ 6.9%). Patients from group 
1 had a higher weight than those in group 4, but 
also lower dialysis vintage than those in group 3 
and 4 (Table I). As also reported in Table I these pa-
tients also had lower CRP levels than those from 
group 2. We also found a  significant, but weak, 
positive correlation between NT-proBNP and RFO 
values (r = 0.13, p = 0.04, Figure 1).

Survival analysis

During the follow-up (mean: 41.1, median: 
48.7 months), 89 (31.2%) patients died. Patients 
who had either increased NT-proBNP (more than 
4595 pg/ml) or increased RFO (more than 6.9%) 
levels had an augmented risk for mortality (Fig-
ure 2 A and B, respectively). However, as shown 
in Figure 2 C, combining these two variables, we 
observed that patients in group 1 (low NT-proBNP 
– low RFO) had the lowest, while those in group 4  
(high NT-proBNP – high RFO) had the highest 

Table II. Univariable COX analysis for all-cause mortality

Parameter HR 95% CI P-value

NT-proBNP – RFO Groups:

Group 1 Reference

Group 2 1.45 0.75–2.82 0.27

Group 3 1.55 0.81–2.96 0.19

Group 4 2.36 1.32–4.23 0.004

Log NT-proBNP [pg/ml]* 1.48 1.19–1.83 < 0.001

RFO (%) 1.03 1.01–1.06 0.02

Age [years] 1.04 1.02–1.06 < 0.001

Diabetes (0 – no, 1 – yes) 1.56 0.95–2.54 0.08

Gender (1 – male, 2 – female) 0.69 0.45–1.05 0.08

Severe NYHA Class (0 – Class 1 and 2, 1 – Class 3 and 4) 3.87 2.05–7.28 < 0.001

Hemoglobin [g/dl] 1.18 1.03–1.35 0.02

Log CRP [mg/dl]* 1.40 1.13–1.74 0.002

Log phosphorus [mg/dl]* 0.80 0.69–0.92 0.002

CRP – C-reactive protein, NT-proBNP – N-terminal pro-B-type natriuretic peptide, NYHA – New York Heart Association, RFO – relative fluid 
overload. *Hazard ratio for each increase in 1 SD in log of the variable.
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risk for the outcome. These findings were con-
firmed in the univariable Cox survival analysis 
(Table II), where only patients in group 4, and not 
those from group 2 (high NT-proBNP – low RFO) 
or 3 (low NT-proBNP – high RFO), had significant-
ly higher HRs as compared to those in group 1  
(HR = 1.5, 95% CI: 0.8–2.8, HR = 1.6, 95% CI: 0.8–
2.9 and HR = 2.4, 95% CI: 1.3–4.2, for group 2, 
3 and 4, respectively). These results were main-
tained even after adjustment for all the univari-
able associates of the outcome (Table III). 

Although dialysis vintage was not associat-
ed with the outcome in the univariable survival 
analysis (HR = 1.12, 95% CI: 0.89–1.38 for each 
increase in 1 SD in the log of the dialysis vintage), 
due to the differences in its values observed be-
tween the 4 RFO-NT-proBNP groups (Table I) we 
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Figure 1. Regression analysis of RFO and log 
NT-proBNP
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Figure 2. Kaplan-Meier analysis for the all-cause 
mortality outcome according to the median values 
for NT-proBNP (A) and RFO (B) levels and for the 
four predefined groups of patients (group 1 – low 
NT-proBNP and low RFO; group 2 – high NT-proBNP 
and low RFO; group 3 – low NT-proBNP and high 
RFO; group 4 – high NT-proBNP and high RFO) (C)
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Table III. Multivariable COX analysis for all-cause mortality (using NR-proBNP – RFO Groups)

Parameter HR 95% CI P-value

NT-proBNP – RFO Groups:

Group 1 Reference

Group 2 1.16 0.59–2.26 0.67

Group 3 1.40 0.72–2.75 0.32

Group 4 2.00 1.11–3.62 0.02

Age [years] 1.04 1.02–1.06 < 0.001

Diabetes (0 – no, 1 – yes) 1.02 0.62–1.69 0.94

Gender (1 – male, 2 – female) 0.76 0.49–1.18 0.76

Severe NYHA Class (0 – Class 1 and 2, 1 – Class 3 and 4) 2.04 1.06–3.95 0.03

Hemoglobin [g/dl] 1.22 1.06–1.39 0.004

Log CRP [mg/dl]* 1.30 1.03–1.64 0.03

Log phosphorus [mg/dl]* 0.83 0.69–0.99 0.04

CRP – C-reactive protein, NT-proBNP – N-terminal pro-B-type natriuretic peptide, NYHA – New York Heart Association, RFO – relative fluid 
overload. *Hazard ratio for each increase in 1 SD in log of the variable.

also performed an additional survival analysis  
(Table IV). Including dialysis vintage in the final 
model, patients in group 4 (high NT-proBNP – high 
RFO) had a significantly higher risk for the outcome 
as compared with those in group 1 (low NT-proBNP 
– low RFO) (HR = 1.83, 95% CI: 1.02–3.54).

Since these results would suggest that a high 
NT-proBNP-high RFO phenotype could predict 
a worse outcome, we further tested the potential 
incremental prognostic value of adding NT-pro-

BNP and RFO to a  model including classical risk 
factors, i.e. all the univariable Cox associates for 
all-cause mortality (with p < 0.10 in the univari-
able analysis).

The addition of NT-proBNP (Model 2), RFO 
(Model 3) or both biomarkers (Model 4) to the 
baseline model (Model 1) did not increase the 
discrimination power of the model (Table V). All 
models showed good calibration, but the BIC and 
AIC scores were the lowest in the model that in-

Table IV. Multivariable COX analysis for all-cause mortality (including dialysis vintage)

Parameter HR 95% CI P-value

NT-proBNP – RFO Groups:

Group 1 Reference

Group 2 1.12 0.56–2.21 0.75

Group 3 1.34 0.67–2.68 0.40

Group 4 1.83 1.02–3.54 0.04

Age [years] 1.04 1.02–1.06 < 0.001

Diabetes (0 – no, 1 – yes) 1.07 0.63–1.81 0.81

Gender (1 – male, 2 – female) 0.76 0.49–1.18 0.76

Severe NYHA Class (0 – Class 1 and 2, 1 – Class 3 and 4) 2.06 1.06–3.99 0.03

Hemoglobin [g/dl] 1.21 1.05–1.39 0.01

Log CRP [mg/dl]* 1.31 1.03–1.65 0.03

Log phosphorus [mg/dl]* 0.82 0.68–0.99 0.04

Log dialysis vintage [months]* 1.08 0.83–1.41 0.56

CRP – C-reactive protein, NT-proBNP – N-terminal pro-B-type natriuretic peptide, NYHA – New York Heart Association, RFO – relative fluid 
overload. *Hazard ratio for each increase in 1 SD in log of the variable.
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Table V. Performance of the models for predicting all-cause mortality

Variable Model 1 Model 2 Model 3 Model 4

Discrimination:

Δ C statistics, 95% CI Reference 0.005
(–0.015 to 0.025)

0.005
(–0.013 to 0.024)

0.010
(–0.013 to 0.033)

Calibration:

H-L χ2 = 15.14
p = 0.08

χ2 = 15.45
p = 0.08

χ2 = 13.06
p = 0.16

χ2 = 15.46
p = 0.08

AIC 939.29 934.58 937.23 933.94

BIC 956.71 954.49 957.14 956.34

Reclassification:

IDI, 95% CI Reference 0.017
(–0.001 to 0.056)

0.019
(–0.001 to 0.056)

0.31
(0.003 to 0.082)

NRI, 95% CI Reference 0.120
(–0.036 to 0.235)

0.107
(–0.073 to 0.266)

0.168
(0.004 to 0.312)

C statistic with only conventional predictors was 0.749. AIC – Akaike information criterion, BIC – Bayesian information criterion,  
H-L – Hosmer and Lemeshow test, NRI – net reclassification improvement. Model 1 – age, gender, smoking status, diabetes, systolic blood 
pressure, HDL and total cholesterol. Model 2 – Model 1 + NT-proBNP. Model 3 – Model 1 + RFO. Model 4 – Model 1 + NT-proBNP + RFO.

cluded both biomarkers (Table V). The reclassifi-
cation abilities were increased only when both 
NT-proBNP and RFO were added to the baseline 
model (IDI = 3.1%, NRI = 16.8%), but not when 
only NT-proBNP (IDI = 1.7%, NRI = 12%) or RFO 
(IDI = 1.9%, NRI = 10.7%) was included in the ini-
tial model (Table IV).

Discussion

This study shows for the first time that, in HD 
patients, using two complementary methods for 
fluid estimation (bioimpedance and NT-proBNP) 
could improve patients’ outcome prediction. Uti-
lizing the four categories of fluid status according 
to the two parameters evaluated could better dis-
criminate hydration status and therefore might im-
prove treatment prescription and individualization. 

Numerous studies have shown the diagnostic 
abilities of bioimpedance in HD patients. Wiz-
emann et al. demonstrated for the first time in HD 
patients that fluid overload, as assessed by bio-
impedance, is associated with mortality [4]. These 
findings were later confirmed in another observa-
tional study which showed an increased risk for 
death in patients with fluid overload, above and 
independent of hypertension – the main parame-
ter of clinical fluid assessment in clinical practice 
[24]. Our group recently took this approach a step 
further and showed that bioimpedance-assessed 
fluid overload and its association with all-cause 
mortality are independent even of underlying 
(echo)cardiac parameters (7) – recognized predic-
tors of worse outcomes in HD patients [25]. Most 
importantly, two randomized controlled studies 
proved that using bioimpedance for dry weight 

estimation improved blood pressure control, arte-
rial stiffness [9, 10], left ventricular mass index [9] 
and even survival [10].

However, although the beneficial effects of 
this method are well supported, it is far from be-
ing perfect or unanimously accepted. Recently, 
Raimann et al. showed in a well-conducted vali-
dation study that bioimpedance analysis could 
significantly facilitate body fluid assessment, but 
is associated with evident precision and accura-
cy errors [26]. Firstly, bioimpedance spectroscopy 
estimates fluid compartments from the resistance 
and reactance of a  current passing through dif-
ferent body regions. When an alternating current 
is applied to tissues, the measurement of resis-
tance is inversely proportional to the total content 
(which includes both ECW and ICW) between the 
two electrodes placed at distance on the skin, 
while the reactance is proportional to the cell 
mass in the same tissue volume [27]. Therefore, 
the derived information about body compart-
ments is only an indirect measure of tissue water 
content and distribution. Although there is a very 
good agreement between bioimpedance spec-
troscopy and the gold-standard isotope dilution 
techniques for TBW and ECW assessment, the 
95% CI in the agreement with ECW is ±2.8 l, which 
is approximately 17% of the TBW, and it may be 
larger in some HD patients [21, 27]. Furthermore, 
Raimann et al. demonstrated that, as compared 
with direct estimation methods, there is slightly 
better accuracy for ECW estimation using multi- 
over single-frequency bioimpedance and for ICW 
estimation using single- over multi-frequency 
bioimpedance. However, bioimpedance analysis 
and direct estimation methods have minimal dif-
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ferences in precision, suggesting that none could 
serve as a  true gold standard with absolute ac-
curacy for body fluid assessment, at least in HD 
patients [26]. Secondly, when estimating ECW, 
bioimpedance analysis does not differentiate be-
tween intravascular and interstitial water content. 
Therefore, other methods addressing the intravas-
cular water compartment would be of interest. 

NT-proBNP is one of the most important bio-
markers for diagnostic and prognostic assessment 
of patients with heart failure. In HD patients, el-
evated NT-proBNP levels are associated with an 
increased risk for all-cause mortality [14–16, 18, 
19], cardiovascular mortality [15] or a composite 
outcome of death and cardiovascular events [17]. 
However, in HD patients there is currently a  de-
bate whether its increased levels could serve as 
a marker of cardiac dysfunction [11, 28] or fluid 
overload [5, 12, 13]. Moreover, studies have shown 
a  direct relationship between change in NT-pro-
BNP levels and both changes in left ventricular 
mass [29] and/or changes in volume status [30, 31].

Combining these two methods (bioimped-
ance and NT-proBNP) for fluid status evaluation 
has been used before in ICU patients [20]. Chen 
et al. included 98 patients at the start of the re-
nal replacement therapy and found that in those 
patients with both higher NT-proBNP and fluid 
overload there was an increased risk for all-cause 
mortality. Although this association was lost in 
the multivariable regression analysis, the study 
had limited statistical power with only 29 deaths 
during the follow-up. By comparison, in our study 
this association remained statistically significant 
in the multivariable survival analysis. These results 
could be related to the different characteristics of 
the included patients (one analyzed stable HD pa-
tients, while the other one analyzed critically ill 
patients, but who were younger and with differ-
ent baseline comorbidities), but also to the differ-
ence in the bioimpedance method used for fluid 
assessment. Furthermore, we also demonstrated 
that by adding these two markers of fluid status 
into a baseline model we can obtain an improve-
ment in the reclassification abilities of that model. 

Our study has limitations. Firstly, being an 
observational study no cause-effect inferences 
can be made. Secondly, we did not perform an 
echocardiographic assessment of the patients, 
although this could have helped to better define 
the relationship between NT-proBNP, fluid status 
and cardiac function. However, it was previously 
shown that NT-proBNP levels are strongly asso-
ciated with cardiac function [32, 33]. Thirdly, due 
to logistic issues, we were not able to assess the 
specific causes of death (such as cardiovascular 
causes), though it would have added important 
information regarding the specific implication of 
fluid overload. Fourthly, the results obtained in this 

study come from only a single region of Romania, 
and should be confirmed in larger, multinational, 
studies. Fifthly, the analysis was performed with 
baseline and not with serial measurements, which 
could have been extremely relevant to better un-
derstand the relationship between overhydration 
and survival.

In conclusion, different types of fluid distribu-
tion can be observed in HD patients. Including 
both bioimpedance and NT-proBNP monitoring 
in a more comprehensive fluid status assessment 
could improve the diagnosis of fluid overload with 
a  final improvement in patients’ outcome. How-
ever, further studies, which should also include 
parameters of cardiac function in the analysis, 
are required to better define and understand the 
relationship between cardiac abnormalities, fluid 
status and hard outcomes in HD patients.
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